Evolution of bacteriophage in continuous culture: a model system to test antiviral gene therapies for the emergence of phage escape mutants.
نویسندگان
چکیده
The emergence of viral escape mutants is usually a highly undesirable phenomenon. This phenomenon is frequently observed in antiviral drug applications for the treatment of viral infections and can undermine long-term therapeutic success. Here, we propose a strategy for evaluating a given antiviral approach in terms of its potential to provoke the appearance of resistant virus mutants. By use of Q beta RNA phage as a model system, the effect of an antiviral gene therapy, i.e., a virus-specific repressor protein expressed by a recombinant Escherichia coli host, was studied over the course of more than 100 generations. In 13 experiments carried out in parallel, 12 phage populations became resistant and 1 became extinct. Sequence analysis revealed that only two distinct phage mutants emerged in the 12 surviving phage populations. For both escape mutants, sequence variations located in the repressor binding site of the viral genomic RNA, which decrease affinity for the repressor protein, conferred resistance to translational repression. The results clearly suggest the feasibility of the proposed strategy for the evaluation of antiviral approaches in terms of their potential to allow resistant mutants to appear. In addition, the strategy proved to be a valuable tool for observing virus-specific molecular targets under the impact of antiviral drugs.
منابع مشابه
طراحی و ساخت نانو زیست ذرات فاژی نوترکیب به عنوان کاندیدای حامل واکسن ژنی- خوراکی
Background and Objective : Bacteriophage vectors recently have been considered as a gene transfer and vaccine delivery vehicles chiefly due to their low cost, safety, and physical stability. Since, little is known about phage mediated gene transfer in mammalian hosts, A group of invitro experiments were performed to ascertain gene transfercapability of these vehicles . Materials and Methods...
متن کاملCoevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h(-1) and by 3 orders of magnitude at a lower dilution rate (0.327 h(-1)). However, the appearance of a series of phag...
متن کاملSynergistic bactericidal activity of a naturally isolated phage and ampicillin against urinary tract infecting Escherichia coli O157
Objective(s): Bacteriophages are infectious replicating entities that are under consideration as antimicrobial bioagents to control bacterial infections. As an alternative or supplement to antibiotics, bacteriophages can be used to circumvent the resistance to existing antibiotics. The aim of this study was to assess the synergistic effect of a naturally isolated phage...
متن کاملLytic Activity of Isolated Phage from Milk Against Extended-Spectrum Beta-Lactamase Escherichia coli
Background and purpose: Escherichia coli (E.coli) is the most common cause of urinary tract infection. The treatment strategy has been hampered by the emergence of broad-spectrum beta-lactamase-producing E.coli and its resistance to most antibiotics. Bacteriophages are suggested as an alternative treatment option. This study aimed at evaluating the lytic activity of isolated phage from unpaste...
متن کاملDevelopment of a Plaque Reduction Assay as an Antiphage Activity Evaluation Method
Background: Antiviral screening of newly isolated or synthesized compounds is an important matter which requires a reliable antiviral test. In order to address this issue, the development of a rapid antiphage test has been conducted. To achieve this goal, the antiphage activity of three antiviral drugs (Acyclovir, Lamivudine and Trifluridin) against phage CP51 which infects Bacillus cereus (ATC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 76 11 شماره
صفحات -
تاریخ انتشار 2002